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1. INTRODUCTION J,@Oy(é

Lo

This volume contains the results of a study done by TRW Space Technology
Laboratories for the George C. Marshall Space Flight Center under National

Aeronautics and Space Administration Contract Number NAS8-11073. The pur-
pose of the study was to determine the effects of various perturbing forces on

the earth parking orbit and translunar phases of a lunar mission.

The perturbations studied have been divided into thrust perturbations and
natural perturbations. The thrust perturbations include gas leakage and venting,
while the natural perturbations include gravitational models, solar radiation pres -
sure, and atmospheric drag. Thrust perturbations are discussed in Section 2 and
natural perturbations are discussed in Section 3. The effects of both the entire
force and the uncertainty in the force are considered. Special emphasis was

placed on the effects of venting or gas leakage thrusts on earth orbits. The total

effects, tracking effects, and uncertainty effects of these thrusts are all
included. f\
i
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2. EFFECTS OF THRUST PERTURBATIONS

This section is concerned with the effects of venting and gas leakage on
earth orbits and translunar trajectories. Two general types of thrust are con-
sidered: continuous thrust and intermittent thrust. Gas leakage is normally a
continuous thrust, but venting may be either intermittent or a combination of
intermittent and continuous. The intermittent venting case is covered explicitly
in the results, and the combined effects can be obtained by summing the separ -

ate effects, since the assumption of linearity is valid in the usual range of effects.

For earth orbits, the total effects, tracking effects, and uncertainty effects
are presented for both continuous and intermittent thrusts. In addition, a dis-

cussion of the use of venting to control the orbit is included.

For translunar trajectories the total effects and uncertainty effects are

presented.
2.1 EFFECT OF CONTINUOUS LOW THRUST ON EARTH ORBITS

The effect of a continuous low thrust on earth orbits can be divided into
three types: (1) total effects, (2) tracking effects, and (3) uncertainty effects.
The total effects are simply the changes in vehicle coordinates that result from
the application of a continuous low thrust. The tracking effects are the errors
in prediction of the vehicle coordinates from tracking data caused by the thrust,
and are usually smaller than the total effects. The uncertainty effects are the
errors resulting from taking into account an erroneous estimate of the thrust

in predicting the vehicle coordinates.
These three effects are discussed in Sections 2.1.1, 2.1.2, and 2.1. 3.

2:171 Total Effééts

Two methods of determining the total effects of continuous low thrust on
earth orbits have been used. Most of the results presented were obtained from
an integrating trajectory program, since this allowed the generation of radar
data to be used in the calculation of tracking effects. Analytic expressions and
sample results are also presented, however, since they allow a simpler method

of calculation as long as the system is linear.



Integrated. The STL N-stage integrating trajectory program was used to
calculate the differences between the coordinates of a thrusting vehicle and a non-
thrusting vehicle with the same initial conditions. This program yields the co-
ordinates of both vehicles relative to the earth, and of one vehicle relative to the
other at a prescribed set of times. The coordinate system used for the relative
positions is centered at the non-~thrusting vehicle and is illustrated in Figure
2.1.1-1. The u direction is radial, the v direction is horizontal in the direc-

tion of motion, and the w direction is out-of-plane.

A nominally-circular orbit with a 200 kilometer altitude was chosen as the
basis for determining the effects of low thrust. This orbit is equatorial, with
its initial position on the x-axis and its initial velocity in the y direction, where
the xyz coordinates form the usual earth-centered inertial system with x to-
ward the vernal equinox and z toward the north pole. Thus the z direction

and the w direction coincide.

The thrusting vehicle was given an acceleration of 5(10-5)g in each of the
u, v, w, x, and y directions separately. The results of these fixed thrusts are

presented in Figures 2.1.1-2 through 2.1.1-8.

The curves present the same results in two different forms for easy com-
parisons. First, all components of the position change caused by each thrust
are shown in Figures 2.1.1-2 through 2.1.1-6. These figures show the u, v,
and w effects of thrusting in each of the five directions, and show the relative

sizes of the effects.

In Figures 2.1.1-7 and 2.1.1-8 comparisons between the effects of the
five thrusts are made in terms of their effects in the radial and downrange di-
rections. No comparison in the crossrange direction is made, because only

crossrange thrust gives a crossrange effect.

For the particular thrust level and orbit used, the following conclusions

can be drawn from the curves:

1. The only significant effect of out-of -plane thrust is
in the out-of-plane direction (Figure 2.1.1-4)

2. The only significant effects of in-plane thrusts are
in«plane (Figures 2.1.1-2, 2.1.1-3, 2.1.1-5, and
2.1.1-6)
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Figure 2.1.1-1. Definition of Orbit-plane
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3. The downrange effect of an in-plane thrust is larger
than the radial effect after about half an orbit. (Fig-
ures 2.1,1-2, 2.1.1-3, 2.1.1-5, and 2.1.1-6)

4. Downrange thrust gives the largest effects of any
thrust in both the radial and downrange directions
(Figures 2.1.1-8 and 2.1.1-8)
Analytic. The analytic expressions derived for the effects of continuous
low thrust are based on linear perturbations of a nominally circular orbit. The
coordinate system used is the uvw system introduced earlier. .In this.coordinate

system, the differential equations are the following:

- 2 .
U -3w u-2w¥v = a
u
- hY +2wu = a
v
.. 2
w +tw w = a
w
where
2r
w = angular frequency, w = T
P = orbital period
au,av,a +« acceleration in the u,v,w directions

u ,4_ = the initial position and velocity conditions:
u(t), u(t) evaluated at t =0

Note that the differential equations are linear with constant coefficients.
The coordinates are proportional to the driving force and superposition may be

used to add separate solutions.

The solution for u,v, and w may therefore be written in matrix form

as

u u a
o o)
v = Alv + Blv + Cja
o v
w w a
o



for constant accelerations. The coefficients A, B, and C can be found by

usual methods to be

"4 - 3cos ut 0 0
A = |-6(ut - sinut) 1 0
0 0 cos wt
sin ut 2(1 --cos ut) 0
B = -‘ls-Z(l-coswt) - 3ut +4sinat 0
0 0 sin wt
1 - cos ut 2(wt - sin wt) 0
C = :lz- -2(ut - sin wt) -%(wt); + 4(1 - cos ut) 0
0 0 1 - cos wt
- ' .

Several important features of the C matrix should be noted:

1) The w motion is independent of whatever is occurring
in the u and v directions.

2) The u motion with a,, = 0 is the negative of the v
motion with a,, = 0. This means that the downrange
effect of a radial thrust is the same as the radial effect
of a downrange thrust, except for the matter of sign.

3) The crossrange motion w is the same as the u motion
due to an acceleration in the u direction. This together
with the previous observation means that the entire motion
can be defined with only three graphs. All five combina-
tions of coordinates and thrust are plotted in Figures 2.1.1-9
through 2.1. 1-13, but as can be seen in the graphs, two of
the five are redundant, _

The altitude of the nominal circular orbit affects the position deviation
caused by a low thrust through w. The amplitude of the effect is inversely pro-
portional to w?' and the speed of the effect is directly proportional to w. The
effects of changing the altitude from 200 km to 700 km are shown in Figures

2.1.1-9 through 2.1.1-13. Notice that the downrange effect of downrange thrust
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is essentially independent of altitude. This is a result of the fact that the domi-

nant therm is (l/wz)l(wtfz or simply tz.

The énalytic formulation depends on the orbit being nearly éir cular. The
approximations involve setting cose =1 and sine = e, where e is the eccen-
tricity of the orbit. For elliptical orbits in the range of 150 to 700 km altitude,
e is less than about 0,05, and the approximation is certainly good ehbugh for
results that are to be presented graphically. The only restriction is that w
should be calculated from the period of the nominal orbit, whether it is circuia:r

or not.

In most cases the analytic results agree closely with the integrated results.
In the radial effect of downrange thrust, however, a discrepancy was noticed.
The integrated effect was lower than the analytic effect after one revolution..
Therefore, the thrust was reduced to 5(10'6)g in the integration and the results
were multiplied by ten and plotted for comparison with the original curve. (See
Figure Z.Ii.;,‘ll-'-'-ldé. For the lower thrust the results agree closely with the anal-
ytic results, '

‘ The u,v,w coordinate system used to express the position effects of low
thrust is a rotating system located at the homina.l position of the vehicle w‘ivthout
thrust. Therefore, two velocity vectors may be of interest. The first is the
rate of change of the u,v, and w coordinates of the thrusting vehicle, and is
obtained by differefxtiating the coordinates with respect to time. The resulting

equation for this velocity with initial conditions and fixed thrust is

) -
u 1y, 1'1°~ _ a
o | .da , 98|, , dc¢ a“
R 13 It | Vo dt | v
W w 1w a
where
, R
3sin wt (0] 0
% = w|-6(1 = cos wt) 0 0
0 0 -sinwt_‘
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cos ut 2sin wt 0

g.? = |-28inwt -3 +4cos ut 0
0 ' 0 cos wt
sin wt 2(1l .~ coswt) .0
I = o2 - cos w) -3ut + 4sinut 0
0 0 sin wt

The other velocity vector of interest is the difference between the inertial
velocity of the thrusting vehicle and the inertial velocity of the nominal vehicle.
Even though this is an inertial velocity vector, its components in the rotating

u, v,w coordinate system can be obtained from

A" u u
u ,
Vv = Iv + Qlv
v
V. W w
w
where
Vu '
v _ the components in the u,v,w coordinate systems of
v { = the inertial velocity difference
Vw
) -w
=|w"0 O
0 0 0]

The second térm results from the fact that the u,v,w system is rotating. That
is, the inertial velocity difference is not zero when U =¥ =w = 0 unless

=v=w=90 also.
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v u u
_ | dA dB .
4 VV = -az- + ‘ZA- v + -a-f + QB v
V &
w (o] _ - L o
r T
a
dC
+ q[ + C v
e —l s w
or, more concisely,
v u a
o o
v = D] v + E|l v + Fl a
v o v
\'A w w a
w, o

where the accelerations are still assumed constant,

By straightforward manipulation, the coefficients obtained are

6ut - 3sinut -1 0
D = w{-2 +3cos ut 0 0
0 0 -sinwt
2 - cos ut 3ut w 2s5inut 0
E = - ginwt -11+2cos ut 0
0 0 cos ut
2ut - sinut w2 -i-%'-‘(wt)2 + 2cos ut 0
F =% -1 +cos wt -wt + 2sin Wt 0
0 0 sin wt
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The largest effects of continuous thrust are produced when the thrust
is in the downrange direction. Then the downrange position and the radial
velocity have large secular effects which are simply related to each other.
The secular term in downrange position is -(3/2)t2 a, and the secular term
in radial velocity is (3/ Awtza.v . In order to obtain the secular radial velacity
effect from the secular downrange position effect it is only necessary to
multiply by -w . The value;of w varies from 1/845 for a 200 km orbit to 1/941
1 a 700 km orbit (with time measured in seconds). As a convenient rule of
thumb, therefore, it can be said that radial velocity error can be obtained
from downrange position error by reversing the sign and dividing by 900.
Figure 2. 1. 1-15 shows the components of inertial velocity effect of downrange
thrust obtained from the integrating trajectory program. Comparison with

Figure 2.1.1-3' shows the similarity between position and velocity errors.

300 -
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N 200 }-—-—-—~4—-
2 /
z /
> 150F -t
S S
O
-~
> 100} pd :
5 e
—
< /
2 0 ”
0 ‘// T w
v e —
-05 40 80 120 160 200 240 280

TIME IN MINUTES

Figure 2.1.1-15. Orbit-plane Components of Inertial Velocity Error
‘ from 5(10 5)g Continuous Downrange Thrust and
200 km Circular Orbit
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2,1.2 Tracking Effects

The effects of continuous low thrusts on the tracking of earth orbits were
determined by doing actual fits to noise-free tracking data generated by the per-
turbed trajectories, and then comparing the resulting estimated orbits with the
actual orbits. The observations were generated by the.'S’TL N-stage trajectory
program and were procéssed by the STL General Tracking Program to obtain
the initial conditions of the non-thrusting orbits which best fit the data in a least-
squares sense. The N-stage program was then used to calculate the differences
between the original thrusting orbits and the orbits resulting from the initial
conditions found by the General Tracking Program.

The orbit used was nominally circular at an altitude of 200 kilometers with
zero inclination and was perturbed by an acceleration of 5(10'5)g .in various di-
rections. Observations were made by three tracking stations located at one de-
gree north latitude and 15,135, and 255 degrees east longitﬁde‘,‘ Rangé, azimuth,
and elevation observations were taken every ten seconds durmg the period of
visibility of the vehicle to each station. The one-sigma uncertainties ‘w.ere as-
sumed to be 10 meters, 0.015 degrees, and 0.015 degrees in range, aéimuth,

and elevation, respectively.

In addition to the parameters associated with the total effects of low thrust,
the number of tracking passes affects the tracking effects. Therefore the re-

sults for each thrust are shown for several different numbers of passes.

The curves present the tracking errors in two different forms. First, the
position errors are plotted as functions of time over the entire 300-minute
périod considered. The results for different numbers of pisses are shown on
separate sheets. This presentation was chosen to show cléarly the error in-
volved in both predicting the orbit after the last data point and in gxtrapo'lating
the prediction into the interval before the fit could be made. In the segoxid form
the effect of varying the number of passes on the acc’uracy‘ at any time is shown
by plotting on one sheet the prediction errors caused by various numbers of

passes with time fneasured from the acquisition of the last data point.




Figures 2.1.2-1 through 2.1.2-3 show the u,v, and w position effects
of u,v, and w thrusts on the prediction of the orbit from three tracking passes.
The visibility periods are indicated by the blocks near the time axis. From
these curves it can be seen that downrange thrust gives the largest in-plane
tracking effects, just as it gives the largest in-plane total effects. It can also
be seen that in-plane thrusts give an out-of-plane tracking error even though

they cause no out-of-plane perturbation of the orbit. This is a result of using

tracking data from stations out of the orbit plane.

Since downrange thrust gives the largest tracking effects, it was chosen
for more detailed study with the results shown in Figures 2.1.2-4 through
2.1.2-9. In these figures the error in the prediction of the vehicle position is
presented with the number of tracking passes as a parameter. In addition, these
curves show the differences between the tracking estimate of the orbit and the

actual orbit during the period covered by tracking data.

As might be expected, the error during the tracking interval is smaller
than the error after the interval, because the fitting procedure has no informa-
tion about errors where there are no observations. As more passes are used,
the fit during the tracking interval has more error, since the actual thrusting
orbit is approximated by a non-thrusting orbit in the tracking program. For
short periods the approximation can be quite good, but for longer periods the

errors become noticeable.

If the prediction error is plotted as a function of time after the last obser-
vation as in Figure 2.1.2-10, it can be seen that the best prediction occurs
when only the last radar pass is used in the fit. Since the model used in the fit
is incorrect (that is, thrust is not considered), the best predictioh is obtained

by using the latest information.

Attempts to solve for a negative drag coefficient to simulate solving for
a downrange thrust have not given good results. In some cases convergence
could not be obtained. On the other hand, when convergence was obtained, the
standard deviation of the drag coefficient obtained corresponded to an accelera-

. -5 . .
tion larger than the 5(10 7)g used in this study. The results therefore indicate

2-24




RADIAL ERROR IN TRACKING ESTIMATE IN KM

-2
N
; N

} M

-12
\"“

-14
\\

-16

-8

0 40 80 120 160 200 240 280 320
TIME IN MINUTES

Figure 2.1.2-1. u Effects of u, v, w Thrusts, 5( 10-5)g Continuous,
200 km Circular Orbit, 3 Passes (1 Revolution)

2-25




i

'DOWNRANGE ERROR IN TRACKING ESTIMATE IN KM

5 = N
g 8 8

N =
S S

e )
o

S
[ EES

.3 g

N
‘.°

TIME IN MINUTES

280

Figire 2.1.2-2. ‘v Effects of u,v,w Thrusts, 5(10 >)g Continuous,

200 km Circular Orbit, 3 Passes (1 Revolution)

2-26

A v
//
/
,/ -
/
e = - N
>0 40 80 120 160 200 240 320



CROSSRANGEERROR IN TRACKING ESTIMATE IN KM
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that it is not worthwhile to solve for a negative drag coefficient to determine a

low downrange thrust.

With a more accurate model of the thrust in the tracking program, it
should be possible to solve for the thrust, since the differences between the fit
and the actual orbit are large enough to see on the graphs. The accuracy and
convergence of the solution then should improve with more data. Verification
of this is currently impossible, however, because the necessary programming
is beyond the scope of this contract. This should be a profitable area for fur-

ther study.

2.1.3 Uncertainty Effects of Low Thrust

A random low thrust may result firom gas leakage, tfrom uncertainties in
continuous venting, or from a combination of the two. In any case the uncer-~
tain thrust is assumed to be fixed both in magnitude and direction relative to
the body axes for any one mission. Different missions have different magnitudes
and directions, however. The effects can be analyzed, therefore, with the ana-
lytic expressions already developed for the position and velocity errors result-

ing from a fixed thrust.

Since the random thrust is assumed to be small enough for linearity to
exist, errors in position and velocity can be calculated from the acceleration

errors from the following equations:

A M
6u ba
u
ov = C| éa
v
dbw ba
Jon— e w_
6V rt')a
u u
SV = F16a
v \'%
oV da
. W — W



That is, the equations for the effects of thrust errors are of exactly the same
form as the equations for the total thrust effects, gince all effects are assumed

to be in the linear regian.

If the errors in accelerations are assumed to be Gaussian so that they are
defined statistically by a covariance matrix, then the covariance matrix of po-

sition and velocity is given by

G

b
i

T T
A €T F
MRS

Covariance matrices of pesition and velocity may also be calculated separately

if only one or the other is desired from

: T
A =CHC
Lo T
/\, = F AA F
where
A = the (6 x 6) covariance matrix of position and velocity
AA = the (3 x 3) covariance matrix of acceleration
AR = the (3 x 3) covariance matrix of position
AV = the (3 x 3) covariance matrix of velocity

If only components of position and velocity are of interest, both methods
will give the same results, but the covariance matrix of some function of both
position and velocity is calculated the full 6 x 6 covariance matrix should be

used in order to account for the correlation between position and velocity.



2.2 EFFECTS OF INTERMITTENT VENTING ON EARTH ORBITS

The effects of intermittent venting can be divided into total effects, track-
ing effects and uncertainty effects just as for continuous low thrust. These effects

are discussed in Sections 2.2.1, 2.2.2, 2.2.3, respectively.

2.2.1 Total Effects

Both an integrating trajecto.ry program and analytical methods were used
to investigate the total effects of intermittent venting, just as for continuous low

thrust. The results are, therefore, divided into Integrated and Analytic sections.

Integrated. Since the range between maximum and minimum spacing of
venting pulses is quite wide, it is very difficult to make meaningful statistical
statements about the uncertainties in the effects. Instead, the effects of venting
at minimum, mean, and maximum intervals have been obtained in order to estab-
lish the range of the variation. Since only extreme conditions were included in
the venting information supplied by MSFC, it was necessary to postulate a model

in order to calculate an "average" venting case.

The following table gives the results of two extreme cases of hydrogen

agitation.
Interval Duration Velocity
Complete Stagnation 15-20 min 0.75 min 1.1 ft/sec
Complete Agitation 80 min 3.0 min 4.8 ft/sec

From the values given above it appears that the velocity addition and the
duration of venting are proportional to the interval between ventings. Therefore,

for the deterministic model these are assumed to be given by

V = ‘;'ST apd T = —8—6—3'0T




where

V = the velocity added by the venting in ft/sec
T = the duration of the venting in minutes
T = the interval between ventings in minutes

for T = 20 min, from the formulas V =1.25 ft/sec and T = 0.75 min. These

value are sufficiently close to the ones tabulated above.

According to this model the average acceleration is the same for all inter-

vals and is 0.0267 ft/sec:2 = 0.000828 g.

If the limits of the interval between ventings are assumed to be 3¢ values

of a Gaussian distribution, then

= 50 min and o = 10 min

ol s T

The corresponding durations and velocities can be calculated from the determinis -
tic model if the interval is assumed to be the dominant random variable.

Regardless of the frequency or duration of venting, an ullage firing occurs

immediately before each venting. The ullage firing has the following

characteristics:
Duration 30 sec
Velocity addition 1.1 ft/sec

Average acceleration 0.0367 ft/s.ec2 =0.00114 ¢

The total effects of intermittent venting are presented in a set of curves
having the same pattern as those presented for continuous thrust. The import-

ant points to be noted are:

1) The intermittent thrust causes more pronounced short period
effects than the continuous thrust.

2) The short period effects are quite sensitive to the frequency
of venting. (Figure 2.2.1-7.)
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3) The entire effect of 20 minute period venting is not significantly
different from the continuous thrust case. (Figures 2.2.1-7 and
2

.1.1-2.)

4) The sensitivity of long period effects to venting period, T, is
slight. (Figures 2.2.1-6 and 2.2.1-7.)

5) Correclation with first order theory is excellent. (Figures
2.2.1-2and 2.2.1~11.)
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-Analytic. The effects of intermittent venting can be approximated by con-
sidering the sum of the effects of a series of velocity impulses. The: response
to each impﬁlse can be calculated from the equations given previously with the
velocity components as initial conditions. Thus, for an impulse at time t=0

- the position effect is given by

(o)
v | = BlV

o
w w

o

A more accurate formulation which takes into account the length of the
acceleration pulse can be dbtained by adding the effects of a fixed acceleration

applied at t = 0 and its negative applied at t = T, where T is the length of the

pulse.
Thus
"l(fi)_T ' va a
u . - u
vit) | = Clt)ja_ |+ Clt-T)la_|; t>7
W(tL‘ a_ a
or
ate) | 2
X : u
o) | = [C(t)-C(t-'r)] a, |5 t>1
w(t) l ' a

Performing the indicated subtraction yields the fact that
. T
C(t) - Clt -7) = TB(t —7)
under the assumption that

2sin -“’ZT-

wT




Only the periodic terms in B are in error if the above assumption is false,
and the amplitudes of the actual periodic terms will always be less than or equal
to the ones given in B. Therefore, the response to a venting pulse of length T

for t> T can be safely approximated by an impulse occurring at t = 7/2 if

[, ) 7
u(z) a_
LT B
V(z—) = 7T av
T, a
__W(Z_‘ W
or
u(t) ‘—Tra
. u
v(t) | = B(t - 3) Ta_ ot > T
wt) . L‘raw

The effects of several venting pulses can be obtained by adding the separ -
ates effects with the appropriate shifts in time axes. When this done it becomes
apparent that the periodic portions of response depend strongly on the interval
between the pulses. For example, pulsing once per orbit causke:s the-periodic:
terms to increase at a maximum rate, while pulsing twice pef\orbit alternately
introduces and cancels pericdic terms (assuming all pulses are in the same di-

rection in orbit-plane coordinates).




2.2.2 Tracking Effects
The effects of intermittent venting on the prediction of earth orbits from

tracking data were analyzed with the same procedure and tracking model used

for continuous thrusts, and the results are presented in a similar manner.

The results of tracking a vehicle which vents at 50-minute intervals are
shown in Figures 2.2.2-1 through 2.2.2-8 for various numbers of radar passes.
Figure 2.2.2+9 summarizes the prediction error in the downrange direction.
Just as for continuous thrust, the prediction error increases as more radar
passes are used. Itis best, therefore, to use only the latest pass as long as

the random errors associated with it are small enough.

Since both the continuous thrust and the intermittent thrust results indicate
that the best procedure is to use the last radar pass only, because of the syste-
matic error effect, the effects of random data noise for one pass have been cal-
culated and are presented in Figure 2.2,2-10. The curves show that the random
effect is much less than the systematic effect for the particular tracking system

used, and therefore, that the last pass only should be used for best results.
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2.2.3 Uncertainty Effects of Intermittent Venting

The uncertainty in the effects of venting stems from the fact that the heat
input and the state of agitation of the hydrogen cannot be predicted precisely.
As a result, the length of time required for each venting and the interval be-~
tween ventings are not accurately known. If the venting is controlled by a valve
which opens and closes at specified pressures, however, the average thrust
during each vent can be predicted more accurately than the venting schedule.
Therefore, it would be desirable to measure and telemeter the time of opening
the vent valve and the length of time that it is kept open. These times along
with the estimated average thrust could then be used in the trajectory calcula-
tion to lead to an improved trajectory prediction, The errors in the times and
the thrust level would lead to uncertainties considerably smaller than would be

obtained if venting were entirely neglected.

In order to evaluate the errors, the approxi mate formulation given in

Section 2.2.1 can be used in a more general form.

u(t) T T, 2,
v(t) | = B(t -t - _21_) T a,
w(t) T.a,

—

The parameters which cause error are

the time of initiation of the ith vent

t. =
1 .
. .th
au = the duration of the i vent
a_ = the acceleration in the v direction
a, = the acceleration in the w direction

The total error is

du(t) 6au ‘
ov(t) = Go&ét. + H6t. + K| da
i i v
dw(t) ba
w
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where

— -
3B N
G = gz (-t -T2,
1 T.a
L..l W._J
— -
3B T "i % T “u
H = ST (t.—tl-—z-) Tiav + B(t—tl——z—) a.v
1 T. & a
1
. Ti 0
- et o b
K = B(t«~t 2) 0 TS 0
0 0 T.
1
3B _ dB
'Ei_i_ 3
3B _ 1 dB
% IE

The elements of matrices B and dB/dt are given in Section 2.1.1.

The covariance matrix of position uncertainty is given by

o 2 T 2..T T
AR = Goy G” +Ho_H +KAAK
assuming that the timing errors are independent of each other and of the accelera-
tion errors. This would be the case if separate timers were used to measure
1:i and Ti' The use of separate timers is desix_'able, since the result is more

sensitive to O'T' than crt. A more accurate clock should be used to measure the

short time T, than the long time ..

The uncertainties in the components of acceleration arise from the error
in predicting the magnitude of the acceleration and from the errors in the know-

ledge of the orientation of the vehicle at the time of venting.
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2.3 USE OF VENTING THRUSTS FOR CONTROL OF EARTH ORBITS

Since venting perturbs the trajectory in a way that is to some extent con-
trollable, the possibility of making use of the venting to improve the orbit exists.

At first it appears that the venting thrust could be used to counteract drag or

- other natural perturbations and produce an orbit which is better in some sense.

Some of the possibilities and complications involved in this procedure are

discussed in this section.

2.3.1 Possible Control Schemes

In order to eliminate the effects of natural perturbations at all times along
the orbit, the venting thrust must produce an acceleration equal and opposite to
the total perturbing acceleration. Since the venting is subject to some random-
ness, this total elimination of the effects of natural perturbations is impossible.

Some less difficult goal, therefore, must be set.

The correction of in-plane position and velocity at some time is possible
if two venting pulses occur long enough before the time in question. This is
accomplished by adjusting the attitude of the vehicle and in-plane velozity
addition appropriately at the two venting times. The excess velocity available
at each time 1s eliminated by orienting the thrust vector sufficiently out of the
orbit plane. Since the out-of-plane components of velocity are randem, out-of -
plane errors are generated. The sensitivity ¢f the orbit to out-of-plane thrusts
is small, however, and these effects are negligibie. In addition, the out-of-
Plane thrust direction can be chesen (from the two possibilities) to have its

effect opposite to the natural perturbaticn effect.

The control of any two imn«plane quantities can be accomplished with only
one venting pulse. For example, downrange positicn and radial velocity can be
controlled at the expense of possibly increasing radial position and docwnrange
velocity errors. Once again, out-of -plane venting required to reduce the in-

Plane venting to the desired level causes small out-of-plane errors.,

With one venting pulse it is also possible to minimize an arbitrary quad-
ratic function of the positicn and velocity error components at the time c¢f inter -

est. For example, the position error (squared) or the velocity error isquared)

Ny
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could:‘be minimized. .This procedure involves doing a weighted least-squares

fit with the constraint that the magnitude of the venting impulse is fixed.

Two methods of venting which do not precisely control any variables, but
offer the advantages of simplicity, consist of either always venting downrange to

make maximum use of the energy available or always venting crossrange to

) minimiize“tﬁe_, totél.venting effects. Downrange venting normally would more

than cancel at:nospheric drag, while crossrange venting would essentially elimi-

nate the need to consider the effects of venting.

2.3.2 Difficulties Involved

Orbit control with venting thrust requires control of the orientation of the
venting thrust. ‘If‘thel, desired thrust direction is fixed in orbit-plane coordinates
or in inertial cgo:ﬁixiates, no particular difficulties arise. The vehicle can
qimpiy be held in the desired orié’ntation at all times. If, however, the orienta-
tion of the venting thrust must change with time, then two possibilities exist -—

the thrust direction may be fixed relative to the vehicle, or the thrust direction

. may be variable relative to the vehicle. If it is fixed, the entire vehicle must be

r.eorienfe,d for each venting pulse. If the thrust is to be variable in direction
relative to the vehicle, a more complicated system of ullage must be used in
order to avoid venting liquid in addition to the gas. One way to accomplish this
is to provide ullage and venting equipment in both directions along three axes.
Venting in an arbitrary direction could then be approximated by venting sequen-

tially with the proper components along the three axes.

The problems involved in controlling the directions of venting make cross-
range venting attractive, since the crossrange direction is fixed in both inertial
and orbit-plane coordinates. Therefore, the vehicle attitude could be held fixed
in either system and crossrange venting could be accomplished. Since the total
effects of crossrange venting are small, it would not even be necessary to vent

in both directions.
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2.4 EFFECTS OF CONTINUOUS LOW THRUST

ON TRANSLUNAR TRAJECTORIES

The sensitivity of a translunar trajectory to a continuous low thrust de-
pends on the particular trajectory and on the direction of the thrust. Con-
sideration of possible combinations of trajectories and thrusts could lead to a
large and expensive parametric study. Fortunately, a good estimate of the
effect of a small continuous acceleration applied over the whole trajectory is

given by the simple relationship

1 .2
b = -2- atf
where
6b = -the change in impact parameter caused by the acceleration
a = the perturbing acceleration
te = the time of flight

In order to make acceleration due to gas leakage negligible, it would
have to be kept to less than 10 —Sg. If this can not be done, it may be neces-
sary to solve for the thrust from tracking data so that its effect can be included
in the calculation of midcourse corrections. The analysis of the accuracy

attainable, however, is beyond the scope of this study.
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2.5 EFFECTS OF INTERMITTENT VENTING

ON TRANSLUNAR TRAJECTORIES

As for continuous thrust, a large parametric study of the effects of inter-
mittent venting could be made. However, useful results may be obtained by
considering a sample. For a particular 72-hour trajectory the maximum sensi-
tivity of impact-parameter miss to velocity at injection is about 600 km per
m/sec. At four hours after injection it is about 300 km per m/sec. A typical
venting impulse of 1.5 m/sec in this interval would give from 450 km to 900 km
miss, if no midcourse corrections were made subsequently. The midcourse
correction velocity required to eliminate the venting effect depends on the time
of making the correction. During the first four hours the midcourse sensitivity
drops by about a factor of two. After that time it is roughly proportional to the
time remaining before lunar arrival. If a correction were made as late as the
halfway time, the midcourse velocity required could only be about four times

as large as the venting impulse.

The effects of venting can be minimized by orienting the venting thrust in
the least sensitive direction. If only impact parameter miss (two-dimensional)
is important, the effect can be eliminated nominally, but if a three -dimensional

miss is used, the effect can only be reduced.

The time of initiation and the duration of each venting can be telemetered
and used to reduce the error in the tracking estimate just as for earth orbits.

Of course, this does not reduce the amount of midcourse velocity required to

remove the venting effect, but it does allow it to be commanded more accurately.

2-65




3. EFFECTS OF NATURAL PERTURBATIONS

Perturbing accelerations and physical model uncertainties in parking
orbits and lunar transit trajectories are analyzed. Perturbations considered

result from the following sources:

. Point mass Moon, Sun, Jupiter
Aspherical Earth (Jz, J3, J4, JZ,Z)
Aspherical Moon (A, B, C)

Earth atmosphere

W N e

" 5. Solar radiation

Uncertainties in the following physical constants are considered as they affect

the accuracy of prediction of the vehicle's trajectory:

| Gravitational constant of the Earth (u)

Coefficients of zonal harmonics of Earth (JZ, J3, J4)
‘Mass ratio of Moon to Earth (M)

Atmospheric dbens‘ity and/or drag parameter (pA, W/CdA)
Aspherical Moon (A, B, C)

»

moR W N e

Notation, nominal values of constants, and uncertainties are detailed in

Section’l.

A preliminary analytic study is made in Section 2 of the limiting ma gni;-
tude of the perturbing accelerations, both in laboratory units (km, sec) and in
ratios to central acceleration. The results of this portion of the study may be
used for a rough general analysis of perturbation magnitudes for any satellite
or cislunar trajectory. ’These numerical results allow the elimination of sev-
eral perturbation sources and/or uncertainties from the physical models for

parking and transit trajectories in Section 3.

Several variant trajectories are integrated in Section 3 to predict errors
resulting from neglect or uncertainty of perturbing accelerations. Resulting
error in position and velocity vectors is computéd for the parking orbit and
error in miss parameters for the transit trajectory. The following specific
trajectories are considered, where h is altitude above spheroid and a, e,

Mo’ i, &, w are classical elements.




a. Nearly circular parking orbit

(o)

a = 6561 km i = 28°.5

e = 0.00039 Q = 193°

. = 330° w = 142°

t, = 1967 Jan 7 178 < h < 185 km
b. Elliptic parking orbit

a = 6803 km i = 28%.5

= 0.0404 Q = 193°

o ° 330° w = 250°

t, = 1967 Jan 7 150 < h < 700 km
c. 72 hours transit, Sun and Moon aligned

d. 72 hours transit, Sun 80° from Moon
e, 92 hours transit, Sun 900 from Moon

In Section 4 the results of the analytic and numerical studies are used to
recommend which perturbations should be included in the parking and transit
trajectory models, and which uncertainties will produce detectable prediction

errors.
3.1 NOMINAL VALUES

The following nominal values and probable errors will be used for the physi-

*
cal constants of the problem:

L = 3.986032 x 10° km3/sec?  gravitational constant for Earth (=GE)
+0.000010 i 10° km3/sec | ,
a = 6378.165 km equatorial radius of Earth

€ 40.006 km

JZ = 1082,30 x 106:6 Earth zonal harmonic coefficients
- 40.13x 10" (J2‘=2/3 J, J,=2/5H, J4=35/8D
- in Jeffreys' hotation)

*Nominal values are those for APOLLO (Reference 1) and probable errors are
those of References 2 and 3. Probable error (pe) is the deviation from a simple
mean of a distribution corresponding to a 50% probability of the true mean lying
within 1 pe.
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7, = -2.30x107°
> 40.05x10°6

J, = -l.8x 10-66

+ 0.3 x 10"
S = 332,951.3 mass of Sun/mass of Earth

1 +5.0

J = 317.88 - mass of Jupiter /mass of Earth

40,03 :
M = 1/(81.3015 +0.0010) mass of Moon/mass of Earth
R = 1738.09 km mean radius of Moon

40.12 km

coefficients of lunar potential:

2C. = g = 0.60 A = 8.8782 x 10°® kg-km®
ZMR + 0.10

B2 =y = +0.000203 B = 8.8800 x 10°® kg-km®
C-A = p = +0.000619 C = 8.8837 x 10%® kg-xkm?

The above values for the lunar potential correspond to
J = 0.0003109 L = 0.0000608

in the APOLLO recommended form of the lunar potential.

The potential functions actually used for the Earth and Moon are as follows:

2 3
. " 1. [2e 2 1 %e . . 3
QPE = ;lvffJZT (1 - 3sin §)+7J3 - (3 sind ~ 5 sin” §)

4
a
- 5 J4(—re—) (3 - 30 sin”5 + 35 sin46)]
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The above form of @M is exactly equivalent to the APOLLO recommended form.
For the Earth's atmosphere, the ARDC 1959 Standard Atmosphere is used. More
accurate models, both static and dynamic, are available. This model is that
used by the Interplanetary Search Program and is sufficiently accurate to indi-
cate the gross magnitude of errors due to uncertainty in density.
3.2 ANALYTIC APPROXIMATIONS TO MAXIMUM PERT URBING
ACCELERATIONS

To determine when certain of the perturbing accelerations on a vehicle may
be ignored, it is necessary to set an upper limit on their magnitudes for various
positions of the vehicle. For most of the perturbations, such a limit may be ex-
pressed as a function of distances from the central and disturbing bodies only.
For perturbations due to asphericity of the Earth and Moon, the angular orienta -

tion to the equators also pertains.

3.2.1 Point Mass Moon, Sun, and Jupiter

During the geocentric phase these accelerations may be approximated by

an expression in terms of

r =. distance from vehicle to geocenter
rj = distance from mj to geocenter
rZj = distance from vehicle to mj

(see Figure 3.2-1). The limiting case is taken for which geocenter, vehicle, and
mj are in a straight line. The acceleration a.j on the vehicle by object j is

then

1 1 p.m] r]
a; = pmyl—m— - —| = 5|5 -1 (2.1)
r r. r. r
2j j i 2j
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Figure 3.2-1. Perturbing Point Mass

Noting that 1-j =r + ij’ Equation (2. 1) reduces to

Hm 2

a - . J|%r ,(_r (2.2)
i r2 r. r,.
i L ] ] ]
For . >>r, the second term disappears, leaving
pm.
_ jér

| -

For r in km the following expressions yield maximum geocentric perturbing

;
accelerations of Moon, Sun, and Jupiter in km/sec™ :

2
ay = 0.334 x 10° | 2T +( r ) l
FT2M oM ! |
a = 0.802x10-13r
S
a; = 1.02 x 10" 18 .

Table 3.2-1 indicates the importance of the perturbing accelerations of Moon,
Sun, and_ Jupiter relative to the central attraction of the Earth for the minimum

distance of the disturbing body. It is apparent that the effect of Jupiter will be

o
i
[l




11y for a high Earth satellite such as a
synchronous would the cumulative effect amount to a significant perturbation,

and special care would be required to prevent loss of the effect in roundoff in the

integration.
Table 3.2-1. Geocentric n-Body Accelerations
Geocentric Altitude Central Lunar Solar Jupiter
Distance h =r-6378 Acceleration Acceleration Acceleration Acceleration
r a_ ays ag aj
.. 2 2 2 2
(radii) (km) km/sec km/sec km/sec km/sec
1.0 0 9.8x10_§ l.l4x10—3 5.1x10-ig 6.5 x 10‘12
1.025 159 9.3x10-3 1.17x10-9 5.2x10-10 6.7x10:15
1.05 319 8.9 x 1073 1.19 x 10_g  5.4x 1071, 6.8x10_
1.075 478 8.5){10-3 1.22 x 10 9 5.5x10'10 7.0x10'-15
1.1 638 8.1x 1073 1.25x 1075 5.6 x 107,/ 7.1x107,
1.125 797 7.7x10"4 1.28 x 10 9 5.8){10"9 7.3x10_14
5. - 3.9x10_5 6.35x10-8 2.6x10"9 3.2x 10 14
10. - 9.8x10‘6 1 47x10"6 5.lx10:8 6.5x10’13
50. - 3.9x10-6 1.17x 10" 2.6 x10 8 3.2x10-13
60. - 2.7x 10" - 3.1 x 10" 3.9x 107

et Figure 3.2-2

3.2.2 Earth Asphericity

The perturbing accelerations due to an aspherical Earth including zonal
harmonics J, through Jy areas follows (note that r and 6 are geocentric

position vector and declination referred to true equator and equinox of date):

)

= v@a + vq>3 + v<b4

joH
-+
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where

2r )
3 a ) 2 f_
-r%. (f} JZ(TC) (1 -5 sin 6)-;+Zsm6§

&

a 3 [ r
1 . .3 L 2
, = -;!‘7 (2-, J3(-r£) (15 sind - 35 sin”6) — + (-3 + 15 sin“6) K

&

4

a r

- (-3.)34(_;.) (3 - 42 sin’6 + 63 sin’s) F
r

+(12 8in6 - 28 sin8) K

The magnitudes of each of the above accelerations have been derived and may be

written as follows:

2 |
Ez(g_, Jz(i}) 1-2 sin25 +9 sin‘a) z
r

a“ = IVOzl =
3 1
1 2e .2 . 4 . 6.2
agy = |98,] = fz“z, 3,1 =] |9 +90 sin®s - 495 sin®5 + 700 sin°s
a * 2
‘ 5 . . 4
agg = IVQ4| = 'PZ("E) J4(—:—) 9 - 36 8in" § + 1194 8in b
r 1

_ 644 8in®5 + 441 #in®s| 2

To obtain a quantitative feeling for the magnitude of these accelerations for the
initial phases of a lunar mission, the following table has been computed assum-
ing sin 6 = 1/2, which would be approximately the maximum value for an orbit

in or near the lunar orbit plane.



Table 3.2-2. Limiting Values for Aspheiical Earth
Perturbations (sin § = 1/2)"

Geocentric Altitude Central Relative Potential Accelerations
Distance (r-6378) Acceleration
r P ao a@Z a.q>3 aM

(radii) (km) km/sec2 2 20 3

:1.0 0 9.8x10"§ 1.82x10:§ 3 89x10‘2 9.36;:10"2
1.025 159 9-3x 1073 1.74x10"3 3.61x107, 8.48x10°/
1.05 319 8.9x 1073 1.65x107; 3.45x10°, 7.70x 10",
1.10 638 8.1x10 3 1.51:1:10-3 2.92 x 10 6 6.39x10:6
1.125 797 7.7x 1077 1.44x10 o 2.73x10", 5.85x10 g
5 - 3.9x 107, 7.29x 105 3.11x107, 1.50x10_ ),

10 - 9.8::10:6 1.82x10°5 3 89x10'11 9.36 x 10_7,

50 - 3.9x 107, 7.29x10:7 3 11x10'11 1.50 x 10”5

60 - 2,7x 10 5,07 x 10~ 1.80 x 10~ 7.22x 107

¥
cf Figure 3,2-2

3.2.3 Lunar Asphericity and Selenocentric n-Body Accelerations

The acceleration on a lunar transit vehicle due to the lunar asphericity may

be expressed as

2 |r 2 2
W, =*f1‘2’1_§) g-;—-{y(l-S(%))i'ﬁ(l-S(;-) }+2y1+25_1§

where r is position vector referred to the center of the Moon, R 1is lunar radius,
and J, K are unit vectors along the y, z-axes. The relative magnitude of q’ZM

to the central attraction of the Moon would then be

2
aS:M - (%) ¢BS

where S < 1.8 from the following rough analysis, letting z/r =1 (the worst
case); and y/P =0.33 (cf Paragraph 1)
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1n
1]

_15{%(_1 -0)+(1 -5)] +z%l+z§

s = |s| = (-z+g-)_15+z%£

- _aY Yy &
s-\/ 44500

S < 1.8
Hence

a

Z‘z“ < 1.8 g.p'(.f_‘_)z - o.ooobs(%)z

Expressions for point mass accelerations of Sun and Earth (as, aE) are similar

to those for the geocentric case.(’B.l.vl) except r and rj are mecasured from the

Moon. A

%
Table 3.2-3. Perturbations in Selenocentric Phase ;
‘ |
Seleno- Altitude Central Earth Solar Relative Aspherical |
centric h=r-1700 Acceleration Acceleration Acceleration Aspherical Moon
Distance Moon Accel Acceleration |
r o 2E *s 2g2M dp2M
(km) (km) kxn/secz km/sec2 kxn/ssecZ 3 kmm/sec
1,700 0 1.7x107, 2.4x107; 1.4x107,, 6.8x10 5 1.2x 1075
1,800 100 1.5x1073 2.5x10"5 1.4x10",, 6.3x10”, 9.5x 10,
1,900 200 1.3 xlO___4 2,7x 10_8 1.5x10:m 5.5x10"4 7.2 x 10_8
3,200 1,500  4.8x10", 4.6x10 g 2.6x10 7, 2.0x10 ;5 9.6x10
6,400 4,700 1.2x107, 9.1x107, 5.1x10 5" 5.0x10", 6.0x 10_;,
32,000 - 4.8x 10, 4.5x107, 2.6x1075 2.0x107; 9.6x10_,
64,000 - 1.2 x10 9.1x10" 5.1 x 10" 5.0x10"° 6.0x 10

*
~c¢f Figure 3.2-3
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RATIO OF MAXIMUM SELENOCENTRIC PERTURBING ACCELERATION TO CENTRAL ACCELERATION

Figure 3.2-3.
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‘ = 3.2.4 Earth Atmosphere

The acceleration due to the atmosphere of the Earth may be expressed as

where p is atmospheric density, V is velocity, g, is acceleration of gravity
at surface, and W/CdA is drag parameter. For the APOLLO parking orbit ()
and transit orbit (2) respectively

w

1 _ 1b _ .
L N L
‘ d ft m
w
2 1b 6
TE = 113 = 2.6x10 ¢ “gT
d ;.;Z °m

Hence for p in g/m3 and V, in km/s

a. = VZ p ki
1 4. 32 x 103$ecZ
2
a, = V. p km

1.012 x 103 sec2

To characterize the range of accelerations due to drag at various altitudes, the
circular and parabolic velocities are used. The circular velocity is used to ap-
proximate the case for the parking orbit and the parabolic escape velocity approxi-

mates the early stages of the transit orbit.



Table 3.2-4. Atmospheric Perturbations

Acceleration in

Geocentric Altitude Density Acceleration in
Distance Parking Orbit Transit
r h p 2, a,

(km) (km) g/m2 km/sec km/sec2
6528 150 1.835 x 10'2 " 2:6.% m‘g 2.2 x 10';
6538 160 2.258 x 10'7 1.6 x 10'8 1.4 x 10:8
6548 170 8.033 x 107, 1.1x107g 9.7x 107
6568 190 4.345 x 10-7 6.J.x10-9 5.2x10 8
6608 230 1.563 x 10" 2.2x107 7, 1.8 x 10 4
6678 300 3.583 x 10"9 5.0 x 10'11 4.2x10 ;0
6778 400 6.494 x 10-9 8.8x10-11 7.5x 10 10
6878 500 1.576 x 10'10 2.1x10“12 1.8x10'11
6978 600 4.636 x 10'10 6.1x 10"12 5.2 x 10'10
7078 700 1.536 x 10~ 2,0x 10" 1.7x10°

3.2.5 Solar Radiation

E 3
The acceleration due to radiation pressure may be expressed as

LO

——

A

m

4n r cC
o

a =

where at lau, the solar constant

Lo cal

— 2.00

4n ro cm min

1.37x 106

/ sec

and bthe velocity of light

c = 3.00x 105 km/sec

x* e . e
non-rela.‘t1y1st1c



‘ For the parking orbit (1) and transit orbit (2) the area to weight ratios are

2
A _ -3 ft
wl— = 1.053 x 10 v
2
A -3 ft
W;- = 4.10x 10 5
and area to mass ratios are
A «13 km2
—_ = 2,31 x 10 e
m, g
A -13 km2
—— = 9.00x 10 —_—
m, g

The accelerations due to solar radiation pressure are hence

12

1.053 x 10" 2

km/sec

m
ot
1]

2 2

4.11 x 10'1 km/sec

0

az

For a 300-minute parking orbit, solar radiation pressure would produce a 1/2
meter change in position; for a 90-hour transit it would produce a 0.2 m change
in position, In either case, the effect would be lost in the noise of numerical in-

tegration because of the small magnitude of the acceleration.
3.3 COMPUTER SIMULATION OF PERTURBATIONS

The Interplanetary Search Program is utilized to integrate parking orbit
and transit orbit with nominal and perturbed values of physical constants. The

results of the runs indicate what the prediction error would be if the true. model

3-14




differed from the prediction model either by exclusion of a perturbing force or

by a difference of 1 pe in the value of a physical constant.

3.3.1 Parking Orbit Perturbations

Error due to the following sources is considered:

a. Drag uncertainty
Geocentric gravitational constant uncertainty

Neglect of third and fourth harmonics

oo o

Uncertainty in third and fourth harmonics

. Uncertainty in second harmonic

0

« Neglect of luni-solar perturbations
Two parking orbits are considered:

a. Nearly circular, altitude 180 km
b. Elliptical, perigee altitude 150 km, apogee altitude 700 km

Integrations are performed for 300 minutes (about 3 orbits).

Figures 3.3-1 through 3. 3-+4 indicate errors in position and velocity for the
two parking orbits for all error sources indicated above. The errors were com-
puted by differencing position and velocity vectors of the varied orbit and the

nominal orbit.

Ar = 'V(x - xo)2 +(y - yo)z + (z - zo)2

8V =fx- 1) (5 -7 ¢ (e - 2)°

The varied orbits were produced as follows:
a. W/Cd'A increased by a factor of 1.5
b. p increased from 398,603.20 to 398, 603.68 km>/sec’
c. J3 and J4 set to zero

d. J3z increased from -2.30 x 107 to -2.35 x 107° 6
and J4 increased from -1.8 x 10'6‘ to -2.1x10°
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Circular Parking Orbit Position Prediction Error
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e. J, increased from 1082.30 x 10"6 to 1082.43 x 10"6

<

f. Luni-solar perturbation omitted

The changes described in (b), (d) and (e) correspond to increasing the perturba-
tions by the amount of their probable error. For the perturbation due to uncer-
tainty in atmospheric density (a), an arbitrary probable error is difficult to as-
sign. Various models differ in accuracy depending upon whether seasonal and
diurnal variations and solar flux variations are considered. For a non-time-
variant atmosphere (which would be sufficiently accurate for a lunar transit) an
error of one part in three in density has been simulated by the increase of
W/CdA by 50 percent. This is equivalent to reducing p, by one third. The
effect may be scaled up or down according to the accuracy of the atmospheric
model used. For the uncertainty in the central gravitational constant (b), only
that uncertainty resulting from the equatorial acceleration of gravity, 8o is
applied, since error in the equatorial radius would be cancelled out by a corre-
sponding change in that constant. Hence an increase of 0.45 k:rn3/sec’2 is made
rather than the total probable error of 1.0 km3/sec2 (cf. Reference 1. 0).

3.3.2 Transit Trajectory Perturbations
The following sources of error are considered for the transit trajectory:

a. Drag uncertainty

b. Geocentric gravitational constant uncertainty
c. Neglect of third and fourth harmonics

d. Uncertainty in J5

e. Neglect of JZ
f. Neglect of solar perturbation
g- Uncertainty in lunar mass
‘h. Neglect of lunar asphericity

i. Uncertainty in lunar asphericity
Three orbits are considered:

a. 72-hour transit, with Sun and Moon aligned
b. 72-hour transit, with Sun and Moon 80° out of phase

c. 92-hour transit, with Sun and Moon 90° out of phase




' For the second orbit, only neglect of the solar perturbation (f) is considered; for
the third orbit, selected variations are omitted on the basis of conclusive results

from the first orbit. The varied orbits are obtained by the following changes:

a. W/C4qA increased by a factor of 2, from 113 lb/ft‘2
 to 226 1b/ft2

b. p increased from 398,603.20 to 398,603.68 km3/sec:‘2

c. J3 = J4 =0
d. J, = 1,082.30 x 10'6 increased to 1, 082.43 x 10'6
e. JZ = 0

f. Solar perturbation neglected
M = 1/81.3015 increased to 1/81.2915

h., Lunar moments of inertia made equal, A =B =C;
equivalent to setting p =y =0

i. Lunar moments of inertia, A, B, C increased by a
factor of 1,167
Again the perturbations are either omitted or increased by their uncertainty.
The atmospheric density is effectively decreased by 50 percent here because of
the great uncertainties at higher altitudes. Increasing the lunar moments of in-
ertia by a factor 1.167 is equivalent to increasing g by its probable error (from

0.60 to 0.70) in the form of the lunar potential given in Section 1.0.

The controlling uncertainty is that associated with g’, the values for B
and vy, the differences in ratios of moments of inertia, are known to two more

orders of magnitude.

Prediction errors in impact and close approach parameters due to an un«
certainty or omission in the physical model for transit trajectory are summar-

ized in Table 3.3+1. The effect of tracking error reduction is not included.

The quantities b and VOO are parameters associated with the osculating
two-body hyperbola at close approach (see Figure 3.3-5). The radius and velo-
city (r, V) at time of close approach were not differenced for the impact case in

orbit (A) because a considerable part of the "error" would be due to the difference
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Table 3.3-1.

Prediction Errors in Lunar MlSS

and Impact Parameters

A. 72-hour, Sun and b Voo r v
Moon aligned: (4601.387) (1.022062) (1879.328) (2.502438)
ot Ab AV, Ar = AV
a. ADrag | 0° 0.044 0.000000 0.033 -0.000018
b. A +6° ~6.199  -0.000051 -4.474  +0.002467
d. a7, 0° ~ -0.136  +0.000001 -0.098 +0.000054
e. J, =0 -28"14° +1305.267 +0.012758 1015.583 -0.391035
f. Sun =0 -6™18 -502.781  -0.002814 - - - - - - -
g. AM (‘mf“t) +0.041  -0.000003 -0.144  +0.000207
h. A =B=C 0® #3.505  -0.000811 +0.363  -0.000510
(B =y=0)
1. (Afg' Lo o .2.674  +0.000600 -0.298  +0.000411
mhour transit Sun ‘
and Moon 80° apart: (4483.8134) (1.053677) (1877.307) (2.516632)
f. Sun =0 v 2275 4275.6077  +0.001833  +204.155 -0.103128
= == — ==
C. 92.hour transit
(impact): (4430.275) (0. 886846) (2.535363)
b. Ap =28 -11.855  ~0.000035 -+ + = -0.000009
c. I3 =3, =0 - .2° -8.791  -0.000025 « = = =  -0.000009
d. 87, -1° -1.872  -0.000006 - = - = -0.000002
g. AM =28 -0.019  -0.000003 + = - - 40.000136
h- 332% - OC) 0° - +4.301  -0.000868  sys - - «0.000304
Af change in time of closest approach or impact
Ab  change in "effective radius" or "miss parameter"
AVOO change in velocity at infinity relative to Moon
Ar change in radiuys of close approach
AV change in spéed at close approach or impact



in time of impact from time of close approach. For case cf, where nominal
and all varied trajectories ended in impact, only changes in velocity at impact

were romputed since r at impact is the radius of the Moon.

Figure 3.3-5. Selenocentric Hyperbola at Close Approach

3.4 RECOMMENDED MODELS AND ASSOCIATED PREDICTION ERRORS FOR
PARKING AND LUNAR TRANSIT ORBITS

The numerical results of Sections 2 and 3 indicate that several of the per-
turbing forces will be so small as to be lost in the noise of the numerical inte-
gration. Hence, to include them in the force function would be wasteful.. Uncer-

tainties in several of the physical constants are also so small as to be negligible.

3.4.1 Parking Orbit Model

Figures 3.3-1, 3.3-2, 3.3-3, and 3. 3-4 indicate the effects of orﬁitting
perturbing forces and of uncertainties in physical constants on prediction over
three orbital revolutions. The Sun and Moon may be omitted from the parking
orbit model on the basis that their omission produces less prediction error than
do the uncertainties in the geopotential. The omission of J3 and J4 could pro-
duce about a 0.8 km error in position and 0.5 m/sec error in velocity: hence,

they should be included in the parking orbit model. Newton's results from



Transit 2A and 4A (J. Geophysical Research, _(;):f’_, pp 415-16; and Cook, Space

Science Review, 2, pp 355-437) indicate as much as 0.8 km along track error

occurring from neglect of JZ, 5 - the ellipticity of the equator. This effect is
periodic over a day and hence could produce its maximum error after 6 hours.
Therefore, it is recommended that the ellipticity of the equator be included in
the parking orbit model. The effects of solar radiation pressure and Jupiter
were found to be negligible from consideration of analytic expressions in Section

3.2. To summarize,

Parking Orbit Model

Include Omit

Drag Solar radiation

JZ’ J3, J4 Jupiter, Sun, Moon
2,2

Prediction error due to uncertainty in the model will be produced mainly by un-

certainty in drag and in the gravitational parameter, p. By use of a dynamic at-
mosphere the uncertainty in drag may be reduced considerably from that shown

in Figures 3.3-3 through 3.3-6. The results of the Mariner 6 mission should
reduce the probable error in p. Each of these effects produce an error in the
mean motion which may be corrected in large part by tracking. The uncertain-

ties in JZ’ J3, J4 are small compared to the drag uncertainty.

3.4.2 Transit Trajectory Model

Table 3.3-1 summarizes the effects of errors and omissions in the physi-
cal model on pr;edicted lunar approach parameters, for transfers beginning at
275 km altitude. The effect of drag is negligible for this burnout altitude. A
consideration of Table 3.2-4 indicates that drag effects for the interval from 150
to 300 km, (in which a transit vehicle would remain for about 15 sec) produce
about a l-cm change in position. Hence, drag may be omitted from the transit
model. In Section 2.5 solar radiation pressure was shown to be negligible.
From Table 3.3-1C it may be seen that the omission of J3 and J4 produces a

small but significant error of about 9 kin in miss parameter. Hence, J3 and .'J4




should be included in the near-Earth poertion of the transit. J, should be includ-
ed throughout, as it remains about 10_6 times the central accgleration even at
the Moon's distance. Since its effect is included in the lunar ephemeris, it
should be included in the terminal transit phase for consistency. The asphericity
of the Moon (A < B < C) produces a small effect in miss parameter (*4 km) and
velocity (1 m/sec) and should probably be included in the near-Moon portien of
the transit model. The Sun produces a large effect and should of course be in-
cluded. Jupiter should be omitted as it never exceeds 10-7 the central accelera-

tion and can at most produce only about 15 meters change in position in a 90-hour

transit.
Transit Trajectory Model
Include Near-Earth Near -Moon

Throughout Only Only Omit
Sun | J3, J4 A, B, C Drag
J 2 Solar

Radiation

Moon : . Jupiter

Major sources of error in this model will be uncertaihty in the gravitational
parameter, p, (Aba 10 km, AV _ =0.05 m/sec) and uncertainty in lunar poten-
tial, A, B, C, (Ab= 3 km, sV = 0.6 m/sec). Tracking data from Ranger 6
may reduce both these uncertainties. A minor source of uncertainty is JZ for
the Earth (Ab ~ 2 km, AVOD = 0.006 m/sec); this effectf may be removed by mid-
course correction. The lunar mass may be considered well known (Ab = 0. 04
km and Avoo = 0.006 m/sec). All of the uncertainties were estimated by in-

creasing the perturbing acceleration by its probable error in the integration.



4. CONCLUSIONS

The following paragraphs summarize the most significant findings of

this study.
4.1 EFFECTS OF THRUSTS ON EARTH ORBITS

Analytic expressions can be used to analyze the effects of continuous or
intermittent thrusts on earth orbits in the 150-700 km range considered in this

study. Both total effects and the effects of uncertainties can be obtained.

Downrange thrust produces the largest in-plane effects which are down-
range position and radial velocity. Crossrange thrust produces no in-plane

effects and only a small periodic crossrange effect.

When a thrusting orbit is tracked and predictions are based on a non-
thrusting orbit which best fits the-data, only the last radar pass should be
used. The use of earlier passes increases the prediction error. In order to
improve the prediction, the capability of solving for the thrust in the tracking

program must be developed.

The accuracy of predicting an orbit with intermittent venting from track-
ing data can be improved by telemete ring the time of initiation and duration of

each pulse and including this estimate of the pulse in the tracking fit.

Several methods of using venting pulses for orbit control are possible, but the
difficulties involved in controlling the pulses and the resulting errors may
make it more desirable to simply minimize the venting effect by venting

crossrange.
4.2 EFFECTS OF THRUSTS ON TRANSLUNAR TRAJECTORIES

In order to produce a negligible miss, a gas leakage thrust must be
kept down to about 10-8g because of the long time period over which it acts.
A larger thrust could be allowed if it were estimated from tracking data, but

the accuracy with which this can be done has not been evaluated.

Intermittent venting in the early portion of a translunar trajectory can
require midcourse correction velocities of something less than four times

the total venting impulse. In order to improve the accuracy of the commanded




correction, the time of initiation and duration of each venting pulse should be

telemetered and used in forming the tracking estimate of the trajectory.
4.3 EFFECTS OF NATURAL PERTURBATIONS ON EARTH ORBITS

It was found that some effects considered were smaller than the un-
certainties in other effects, while some effects were so small that they would
be lost in roundoff error if an attempt were made to include them. The re-

commended model based on this study can be summarized as follows:

Include Omit

Drag Solar radiation
JZ,J3,J’4 Jupiter, Sun, Moon
T2:2

4.4 EFFECTS OF NATURAL PERTURBATIONS

ON TRANSLUNAR TRAJECTORIES

Since different parameters are important in the near-earth and near-
moon portions of the trajectory, the recommended model is slightly more

complicated than for earth orbits. The model can be summarized as follows:

Include - : Include Near. Include Near: - Omit
Throughout -, Earth Only. - Moon Only . Throughout

Sun J3,J4 A,B,C Drag

Js Solar radiation

Moon Jupiter




APPENDIX

The following section presents the results of an attempt to determine the
statistics of random downrange venting effects with as few assumptions as
possible. The approach is slightly different from that used in Section 2, and

leads to a more complicated expression.

STATISTICAL ASPECTS OF THE HYDROGEN VENTING PROBLEM
THE PROBLEM

The problem studied was the following: consider an object in a circular
orbit. A series of tangential thrusts is applied to the vehicle. These thrusts
represent the only perturbations of the orbit and they are to be considered to be
small perturbations. If there are statistical variations in the magnitude, dura-

tion, and interval between thrusts, what is the effect on the orbit to first-order ?

In solving this problem we began with the analysis of H. J. Klein, "Effects
of Drift Forces on Satellite Motion," 9861.11-1, 27 September 1962. The follow-

ing first-order equations have been used:

2
dp -
=5 -3 -2a =0 (A-1)
dv
2dp d\n
= tE ° o7 (A-2)

These are Equations (8) and (9) of the document cited with the following changes:

a. In the first equation, the right side equals 0, since we are
not considering lift forces.

b. We have replaced O&p by p and AN by \.

c. oT) is the tangential thrust per unit weight. The quantities
in this equation are defined as follows:

1) p is the fractional change in radial distance.

2) T is equal to «t, where t 1is the time and w is
the unperturbed angular velocity.

3) N\ is the fractional change in the angular velocity.
Both p and \ are assumed to be small.

A-l



4) The fractional change in the angular position is
SRR &
thereéfore = [53dT .
Let us take the derivative of Equaticn A-1 and substitute in Equation A -2,

using the prime notation to indicate derivatives with respect to T. We find

7 (o™ - 3p") = ! (A-3)
o - Zp' = N\t (A—4)
or
P+ p! = 20 (A-5)
Setting p' =0, we find
" + 0 = 2« (A-6)

Before discussing the solution of Equation A-6, it should be mentioned that
a preliminary calculation was performed. This calculation involved the Fourier
expansion of the forcing term in the equation of motion. The problem is, essen-
tially, that of a forced harmonic oscillator with periodic driving force. The .
solution is obtained with ease. However, such a solution is of little value in

handling the statistical aspect of the venting problem.

SOLUTION

The form of the quantity, @, in Equation A+6 was a series of square waves.
Each square wave began at "time" T and lasted to T8 . The magnitude of
each pulse was equal to o - At first the problem was solved assuming that all

An and an and T -~ T  Wwere the same for each impulse. However, it is

n+l
possible to obtain a solution in the general case, where these quantities may be
different for each pulse applied to the vehicle. It is necessary to obtain the solu-
tion in this case, if we are to be able to include statistical effects later on in the

study.

We write down the solutions of Equation A-6 for a time between thrusts,

i.e., in the region:



The solution is

Py A
- : n| . n

o(t) = 4o¢n sm(‘r -T - -2—) Sm(T) + o1 cos(T - 'rn)

| (A-T7)
. .
tol sin(t - 'rn)
An An

al{T) = 4an cos(‘r - T, T)sm(-z—) -0 sin(T - 'rn)

(A-8)
1
+tol cos(T - 'rn)
In the region where a thrust is applied
T < 7T< T 4+A
n — —_ n n
the:solution.is"
2|7 n
o{t) = 4a_ sin (-T to _jcos(t-T)
(A-9)
' .
+crn -1 sin(Tt - Tn)
T-T T-T
g'(t) = 40 sin —Z——-n cos 2 oo sin(t -7_)
n Z n-«1 n
. (A-10)

+ o!

-1 cos(T -Tn)

Let us set T = T4l and substitute in Equations A-7 and A-8. We will then
find L and o'. These will be the initial conditions, just as the nth pulse is to

be applied. We find

A
n . :
n T) +o 4 cos Gn tol sm9n (A-11)

AN
g = 4an sin(en - le-) sin

A.3



A D
. _ o} . n| . .
ol = 4an cos (Gn T) sm(—z—) o .1 smBn + LAY

where Gn =T 41 " "o

MATRIX TECHNIQUE

cos 0
n

(A-12)

A useful technique for solving the problem is the matrix technique, which

will be outlined in this section.

used in solving the betatron oscillation problem for nuclear accelerators.

Such a procedure is related to the matrix methods

How-

ever, in the latter case, the equation is always homogeneous, i.e., Equation A-6,

with @ equal to zero. The technique shown here extends the procedure:to .non-

homogeneous equations.

Let us consider o and o-I'1 as components of a vector, Zn'

tion A-6 becomes

where

1]

A s1n(9n - 2— .
4o¢n sin( -21—1) An
. cos(en— T) ‘

cos 0 sinB
n n

-sin@ cos 6
n n

Then Equa -

(A-13)

(A-14)

(A-15)

(A-16)

(A-17)



Note that Rn is just the rotation operator. Therefore, we can say that, if we
examine the vector, 2, just before the nth thrust and compare it to the value it
has just before the n+ 15t thrust, then in the two-dimensional coordinate space
(¢, o') it has been subjected to two effects. It has been translated by Ln and

has been operated upon by the rotation operator Rn~- ‘

Equa‘t.ion A -13 tells us that

z = L +R

n-1 n-1 n-lzn-Z (A-18)

and we can substitute into Equation A~13. We then replace Zn_z by a similar

expression. We repeat until we have reached Zo. Finally, we find

" n n n
an E I | Rj Ls+ Il R]. 20 (A-19)
s=1\J=s+1 J=1
Please note that Zn’ Ls and Zo are vectors.
(A-20)
l -
cos(t 1 ‘Ts+1): sin(T 1 -Top1)
T ,.(n) =RR_ .,...,R 2 ———————_—_— =
s+l n n-1 s +1 [
-sin(T +1°7 +1)'C°S(Tn+l TS+1)
D
. s
4 ‘ A SIn('rs-l-l “Ts T 7
L. = 4o sin(—zs-) | A (A-21)
: cos(-r 17T - 7
Therefore,
As
s Sm(*ml ~Ts T 'Z")
Ts+1(n)Ls = 4as sm(-z— (A-22)




And As As
o sm(-—z—1 sinfr ;-7 - -2--)

s=1
iTs;-}l(n) I"s - n A (A=23)

s=1 . s - As
a, sin -2—1 cos|T . 1-Tg - =

However, since L and o"') are equal to zero for our problem, 20 = ’0 andaccording
to Equation A-19, £ is givenby Equation A-23. '
CALCULATION OF p

We now return to the differential equation p' =o. We have to integrate

this equation as follows:

p(t) = ., etc.

We have to join the solutions at each region and use the result shown in Equation
A-23. The procedure is straightforward and we will write down the result}.’or

p(t) at T equalto T , i.e., just prior to applying the N + 15t impulse. The

N+1
result is

' N A A FaY
p(T ) = 4o D _ sin| =] cos|T T -
N+1 n|l 2 2z n+1 n 2

n-~1l
+ Zas as[(l -cos As)<sin(-rn —~'rs) - sin(-rn"_1 -'rs)>

s=

+ sinAS cos('rn - TS) - c_os(‘rn+1 - Ts)}] (A-24)




Equation A-24 gives the fractional change in the radial distance following N

thrusts of magnitude o of duration s and of spacing To41 - T

+1 n’
STATISTICAL PROBLEM

We now will include the effect of the statistical fluctuations on the three

parameters @, A, and T. We will make the following assumptions:

o = o +An (A-25)
bn = 81D, (A-26)
T =nt +B (A-27)
n o n

A =D =8B =0 (A-28)
n n n

An’ Dn and Bn are independent. (A-29)

The bar over a quantity is the mean of that quantity over the assumed statistics.
We now proceed to calculate p and (p - p)° = ;Z - B'Z .
CALCULATION OF p

The calculation of p is simple to carry out. The result of this calculation

is given in the following equation:

2 2
pi'rN_H} = ZN&O Ao - [cosB + sinB ] [si.nD cos('ro - Ao) +sin'ro

e 2 2
- cosD sin('ro - Ao)] + Zao[cosB +sinB ]
. {sinAo cos D + cos Ao sinD) G

- (1 - cos Ao cos D + sinAo sin D) H} (A-30)




where

N1
sin T
G = NcosT_ - = cos[(N +1) 22]
sin(—-z2 :

. (N‘ro
sin — T
H = -N sin'r0 Fi—— 7 sinﬁ:N +,1)—c_>,]

Note that we have only to evaluate cosx and sinx, where x is either B or D,
. in order to study statistical effects. These averages are easily evaluated in
closed form for Gaussian, exponential, uniform or triangular distributions of the
parameters. For these symmetric distributions sinx = 0. One feature of the
solution to be noted is the occurrence of expressions of the form. sin(‘N‘rOIZ)/
sin('ro/,Z). This is similar to the expression for the amplitude of a wave passing -
through a diffraction grating. This is not surprising, since the problem we have

solved is very similar to the optical problem.

CALCULATION OF p? - p2

The calculation of the mean square deviation from the average was also
carried out, However, this was a gigantic computation., Since the formula for
p in Equation A-24 involves a double sum and a single sum, the expression for

p” - p~ involves a double, triple, and quadruple sum.

The calculation was carried out without specializing to any particular sta-
tistics except that An’ Dn’ and Bn are independent. In this problem the statisti-

cally -varying parameters occur only in the following form: cosx and sinx;_

x sinx and X cosx; cosZ2x and sinZx; and x%, In the final expression for ng

p“, it is assumed that we have a symmetric statistics. This means that terms of

the forms sinx, x cosx and sin2x are all zero. This was done to allow typing

of the final result on 5, rather than 10 pages.




2
] - 8NA z:z[cos B] [sin‘r - cosD sin(t_ - A )]
! o I o o o
——— 2 3 2
)| DsinD cos('ro - Ao)‘ - 2N(¢:¢0 + A )[cos ZE] cos-Z‘ro
- Zcos(Z-ro - Ao) cosD + c:osZ('ro - Ao) cos ﬁ} + [2&3(3N -2)

7 2 ; .:' 2
+ 2NA [cos B] * ¢(cos 2T - 2cos(2T -8B )cosD +cos2(t_ - A )[cos ﬁ,]
o _ o o’ o o

2 ‘ 2
+ 2cos Ao cosD - [cos D] - %’- 4ac2)(N - l)[cos E] {:os Z'ro

. 2
- Zcos(Z‘r0 - AO) cos D + cos .?.('ro - Ao) cos D

2 2
& 4a§(N - 1)_[cos 2B cos B ] [Zcos Ao cosD - cosD - 1]

+ 8NXz Ao[cos E] sin Ao cosD G + (1 - cos Ao cos D) NsinTo

.. N
sin =5 T 2
2 o . N+l 2 2, — -
-— sm(T) T + 8N(A"™ + ozo) (cos B) {cos Ao DsinD G

.. O-
SlnT

N
' sin =5 T
+ sinAo DsinD Nsin'ro - _rZ 0sm(N;l)'r +4 £28 B (. NsinT
: o
sin T sSin T
. N . .
sin 5 T T T
2 o _. [N+l1, . O o
+ T sin( ) T, (I§ZA + 3K1A) sin — + (KZC + 3K1c) cos —-
Sin T

4 .
+ 8 cosB sin(lii-l—) T [— Kia cos(I%tl—) 7o T K. sin(lyjz-l-) TQ]

4
+4(N - 1)cos B [KZA s'1n1'o +KZC cos To]



2
+ 2 cos 2B cos B [(3K1A + KZA) + (KZD - KlD)] [Nsin'ro

. N
sin =< T
2 o . ,N+1
- = sin( > )T()]+‘[(3ch + KZc) + (KZB - KIB)][NCOS T,

sin N-‘ro N+1 2
- ) - - i
= cos( > T, + 2(N - 1) cos 2B cos B (KZA + KZD) sinT

sin hd
2

2
- (KZB + KZC) cos To] + 4cos B [- Nsin T,

. N o
Sin - T cos
2 . N+l
+ ——— sin(=3) To] ['(3K1A +Kyp) + (Kyp - Kyp) —
sin 70— Sin—'zq'
T
cos o
+ (K, +3K, )——-_2—_—+(K . - K. )
2c lc T, 2D 1D
sin T

2
+4cosB Sin(lié_l—):ro[(KlA + KID) COS(IE;.i) To T (KIB +K1c) Si'n(lig_l_) To]

2 N-1 N+l.-
+4 cos2Bcos B sin(—z—) T (KlA - KID) cos(—z'—) T,
N+l 2
+ (KIB - ch) sin(T) To} t+ 2(N - 1) cos 2B [(('.KZA‘ + KZD)) s.in-to
. 1 . 2
+ (KZc + KZB) cos 'ToJ + 2(N~ 1)(1 - cos B ) [(KZA - KZD) sin'ro

+ (ch - KZB) cosT

-
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. i
sin(N +-2—) T
—

2
+2[cosZB-cosT1cosB I:K + K } (N - 1) cos2Tt_ -
c2 sl o o
Sln.T

sin(2N - 1)'1‘o 2 To 1
YL T + (cos To + 2cos - - 7) + ZK2 (N - 1)sin Z-ro
1 To
(N +2-) T, cos(2N-1)T COS — | COST
+ cos - - o +|sinT -¢CcOST —m m—mmmt o —0u"
To 251n'r0 o o To 2 S1n1'o
sin T sin T
—‘———ZI —'——Z] sin T
cos B §1 -cos B 2 o R-1 . N+2
+ 4 } T (Kcl + KSI) [—— T - Ncos(j—)'r0 5111(—-2—)1'0
sin —2— sin T
s in( N'.Zl‘) To N-2 N+3
+ __r(-)————— - (N - 1) cOs ( T) To 81n( —2—) TO
sin —-2—
sin %ITo N-1 N+2,
- ZK1 —_— - NCOS(T)TO cos ( T
sin 72
Sin(Nil)To N-2 N+3
+ ———T - (N -1) cos(—z—) TS cos(—z—) T
Sin T
2 2 sin(—Z—ZN—3)'ro
+ 2 cos B |cos - cos B - K (2N - 3) -
i cl sl T
sin —Zo-
4 [K 1 K l] sin 2Nt 51n(N+Z)T
4+ 4 cos B < 5 - 1 + Ncos T
2 7o sinT T
45111 T sin —z-
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[sin(ZN+Z)'ro sin(N+-§-)‘ro 1‘]
+ )

, o
+ Ncos 3t +cos2t_ -cost_(1 - 4cos
o o o P

2sinT - T
o . O
sin —2—
- 2 Sln[(N—Z)TO]COS[(N+2) T(J» - 2cos To sin[(N-Z)T ]éOS[N+4 T ]
T T, 2z 2 "o 2 o
sin —- 2cos -
+ (Eii) sin Z-ro
. ,2N-1
2 2 (K, -K ) sin( )T
+ 25558 [ .58 ] cl sl (ZN-I) - 2 o
2 1'o 2 To
sin —2— 281]’1 —2—-
Nt
2 . . N-2 o
- - 2(N - 2) sinT_ - sm(—-—z—'ro) cos —y—
sin —2—
4 2K cos 2NT (N+1)T cos ‘o
+ 4cos B 1 11 - v © + cos —-z—?-+Nsin‘r -——————2_-
T 2sin T sinT T o T
8i 2 o o o gin -2 si o
m - 7z n
cos(ZN+2) T cos(N+ 5)1’ cos 2T_ cos To
+ |- Tl °+ TZ— © 4 Nsin3t + sinZTo - o Zz
o . ) o . o
s1in —-z— s1in -—Z—
) 2 sin((N-Z)'ro]sm((N+2)'ro) yeos To gin(N‘zT ) sin(N+4)1-
T T 2z 2 ‘o 2 ' o
sin —- 2cos -
2 2HK ,+K )
- (1-\1—5—2-) cos 2T + Z[cosB - cos ZB] C‘Z LL (I-ZN)(I +cos 271 )
o 2sin T ©
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i 3
+ cos T [Ncos 31 - cos(ZN + I)T J - L(N - 1)cos 4T - cos 2NT
o o o o o

: ZK2
- (N - 2) cos 2t + (
o .
' : 2s8in To

1

-N, . .
3 )} sin Z-ro + cos TO[NSIH 3'1'o

- sin(2N + I)TO] - N - 1) sm4'r° - sin ZN'rQ ~-(N-1) sinZ-ro

+ Z[WB - 1]Z[Kcz - Ksz] [N - 1]{N - (N-2) COSZTO}

2 Z4N-3

‘ 2., ' sin( )T
'+ 2508 B [1 2 T8 (K, - k) (2N - 3) . _Z o
sin
. 3
2 sm(N'l-f)T0
+2[cosZB cosB] [K + K ]
cl sl T
' sin -
-
o
cos
+NcosZ-r° + cosT0 —z-+ - smT
sin —;—
3
cos(2N+1)T COS(N+2‘)TO
+2K. 4. ' ° 4+ + Nsin 2T
1 Zsm'ro T o
sin
T \’\.
o
. ] COST  ~ cos — \
+|sinT s - T cosT I

R (o]
Sln—z-
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To use the above results, we need the following items:

For Pages 10 throughili

S1in 71’
- o N+l
G = |Ncost+ - T S(T)To
S51n T
K = Zaz sinT - sin(t -A ) cosD - sinT_cosA_ cosD
1A (o} o o "o o Lo}
2
+gin{t_ -~ A )cosA cosD
o o o
K = Z(cz2 +.ZZ) 3 ginT_ - sin(r -« A )cosD - sinT_cos A _cos
2A o Z o o o o o
|
+ 5 sm(’ro - ZAO) cos ZD]
K = -Zaz[cos T -cos(T_ -A )cosD-cosT cosA cosD
1B o o o o o o
2
+cos(t_-OD )cosA cosD
o o o
2 2.3
KZB = -2(a° + A )[—z- cos T - cos(‘ro - Ao) cos D - cos T, COS Ao cos

+-%-cos('r -2M ) cos ZD]
o o

" e e o w e W e = o e e M Em m M e e w m m w e e e em m wm e e w w w m w
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>f 2]

K = 2¢ |sinT_sinA cosD - sin(T_ - A ) sinA cosDJ
ic (o) (o) o o o
K, = 2(o +A")]|sinT_ sinA m-lcos(-r - 2A ) cos D+l-cos~r
2¢c o 2 o o 2
2 2
K = 20 |cosT_ sinA cosD-cos{(t_ - A )sinA_ cosD
1D () o o o} o o
K = 2(¢x2 + A)lcos T_ sin& cosD+-1—sin('r - 22 ) cos ZD-—l-sin-r
2D (o) o o 2 o o 2 o
For Pages 12 through 14
> 2
K + K = o |-1 +2cosA cosD - cosD cosZ2A
sl cl o o o
2 2
K, +K = (. +A7){-1+2cosdA_ cosD - cosZD cos2A
s2 c2 () o o

2
ozz 1l -2cosA cosD +cosD
cl sl o) o

K - K =
K. -K. = (0 +A%)|2 - 205D cos &
cl s2 o
2 2
K, = o [sinA cosD - cosA sindA cosD
1 o o o fo)

K2 = (ai +XZ)[sin Ao cosD - cos A% sinA0 cos ZD]
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For distributions of form

2
e X /W
P(x) = e
"'xz/
i e~ W dx
200
_ -w2/4
cosx = e
i wz -w2/4
XSinX = —— €
2
2
Cos2x = e ¥
2 1:1/2 3
X = -T—W

COMMENTS

The result for F - FZ is a formidable one. However, in spite of this the
expression can be very useful. For example, suppose we assume that A, B,
and D have Gaussian distributions with widths Wao WB’ and WD. Then, on;é 7
we have written a program to compute p - p , we can determine how the mean
square deviation changes with the widths of each of the three statistical quantAi‘- |
ties. While the expression for the mean square deviation is very long, the terms

are relatively simple.

While we have only obtained expressions for p and ;Z - Fz, it is possible.
Ny
A

to use the same technique to find X and -\". The calculation of the latter

would be even more imposing than the p calculation.
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